Photonic nanorods with magnetic responsiveness regulated by lattice defects.

نویسندگان

  • Huiru Ma
  • Kai Tang
  • Wei Luo
  • Lin Ma
  • Qian Cui
  • Wei Li
  • Jianguo Guan
چکیده

Herein, we use experiments and numerical simulations to demonstrate a novel class of magnetically responsive photonic crystals (MRPCs) based on photonic nanorods which exhibit multiple optical properties in a magnetic field (H) due to their fixed photonic nanorods and H-tunable lattice defects. As an example, superparamagnetic Fe3O4@polyvinyl pyrrolidone (PVP)@SiO2 photonic nanorods were fabricated through a polyacrylic acid-catalysed hydrolysis-condensation reaction of γ-mercaptopropyltrimethoxysilane around chain-like PC templates formed by monodispersed Fe3O4@PVP particles under H. For the as-proposed MRPCs, with increasing H, the photonic nanorods firstly experience in situ rotational orientation along the H direction, followed by alignment and connection into long parellel nanochains via the spaces between the ends of adjacent photonic nanorods (named lattice defects). As the number and size of the lattice defects changes with H, the MRPCs exhibit visible red-shifts and blue-shifts of their diffraction wavelengths in addition to monotonous enhancement of their diffraction peaks. These optical properties are very different from those of previously reported MRPCs. The diversity of the structural colors and brightness of these MRPCs with H is also closely dependent on the applied time of H, the concentration of the photonic nanorods, and the structural parameters of the nanorods, including nanorod length and interparticle distance. Due to the difficult duplication of their various optical properties as well as their easy fabrication and low cost, MRPCs based on photonic nanorods are suitable for wide applications in forgery protection and information encryption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Properties of an Optical Waveguide Based on Photonic Crystal with Point Defect and Lattice Constant Perturbation

In this paper, a photonic crystal waveguide with point defects and lattice constant perturbations of +5%, -5% are being investigated. Firstly waveguide structures with constant and specific parameters are being studied and photonic band gap diagrams for TE/TM modes are depicted; then pulse propagation in the frequencies available in the band gap are shown. After that, effects of parameters like...

متن کامل

The Effect of Annealing, Synthesis Temperature and Structure on Photoluminescence Properties of Eu-Doped ZnO Nanorods

In this study un-doped and Eu-doped ZnO nanorods and microrads were fabricated by Chemical Vapor Deposition (CVD) method. The effects of annealing, synthesis temperature and structure on structural and photoluminescence properties of Eu-doped ZnO samples were studied in detail. Prepared samples were characterized using X-Ray diffraction (XRD), scanning electron microscopy (SEM), particle size a...

متن کامل

Influence of optical Kerr coefficient on photonic band structures of hexagonal-lattice function photonic crystals

In this paper, we have studied the photonic band structure of function photonic crystals in which the dielectric constant of the scattering centers (rods) is a function of space coordinates. The under-studied lattice is hexagonal and cross section of rods has a circular symmetry embedded in the air background. Photonic band structures for both electric and magnetic polarizations of the electrom...

متن کامل

Square Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm

 In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric  split-step Fourier (SSF) and  fourth order Runge Kutta (RK4) which is an accurate method to solve the general  nonlinear...

متن کامل

Low Delay Time All Optical NAND, XNOR and OR Logic Gates Based on 2D Photonic Crystal Structure

Background and Objectives: Recently, photonic crystals have been considered as the basic structures for the realization of various optical devices for high speed optical communication. Methods: In this research, two dimensional photonic crystals are used for designing all optical logic gates. A photonic crystal structure with a triangular lattice is proposed for making NAND, XNOR, and OR optica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 9 9  شماره 

صفحات  -

تاریخ انتشار 2017